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ABSTRACT 
 
 
The initiation of a detonation in Pulse Detonation Engines (PDE) has been 

identified as one of the critical and enabling technologies for PDEs.  In particular, the 

initiation of practical fuel-air mixtures containing liquid droplets without supplementary 

oxygen or other high loss mechanisms is a capability that could enable the PDE to exceed 

the performance of ramjets and expendable turbo-machinery based systems.  Although 

past engine designs have relied upon a sensitive fuel/oxygen initiator unit or unrealistic 

gaseous fuels such as ethylene and propane, a PDE was designed and partially tested that 

has eliminated the requirement for supplementary oxygen as well as enabling the use of a 

JP-10, high-density liquid fuel.  Air flow through segments of this PDE was simulated 

using Computational Fluid Dynamics and experimentally evaluated in the laboratory at 

simulated flight conditions, including supersonic cruising conditions.  The spiral lined 

initiator demonstrated a lower total pressure loss when compared to the geometry with 

rings, and thus was the preferred initiator configuration.  Experimental values for the 

turbulence were found to be significantly lower than the computed values at similar 

conditions when using the k-ε model.  Finally, successful ignitions of the JP-10/Air 

initiator at frequencies of up to 20 Hz were experimentally demonstrated. 
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I. INTRODUCTION  

Pulse Detonation Engines (PDEs) have received renewed interest over the past 10 

years due to advances made in the technology and study of PDEs.  Detonations have been 

actively studied for more than a century; however, most of the studies have included non-

propulsion applications for detonations.  One of the key problems of using detonations 

for the application of propulsion is the detonation initiation process.  The PDE uses 

repetitive detonations as a method of producing thrust, an idea first explored by German 

scientist H. Hoffman in the late 1930’s [1].  The PDE is predicted to be capable of 

producing practical thrust levels with a specific impulse equal to or in excess of those 

seen in both gas turbine engines and ramjet engines when operating in a particular range 

of Mach numbers.  Figure 1 depicts various engine concepts and their respective specific 

impulse over their practical flight Mach number range [2]. 

 
Figure 1.   Performance Comparison of High-Speed Propulsion Technologies  
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Although turbojets demonstrate superior performance at subsonic and low 

supersonic Mach numbers, their performance decreases rapidly as Mach number 

increases.  As Mach number approaches approximately four, a turbojet’s performance is 

diminished not only by thermodynamic limits but also by structural limitations of the 

internal machinery and combustor casing.  Ramjet and scramjet engines are able to 

produce thrust with a comparable specific impulse at these higher Mach Numbers but 

lack the capability to operate at lower Mach numbers due to the fact that they have no 

mechanical compression and rely solely on the inlet diffuser which requires high Mach 

number.  Due to this operating limitation, these engines must be boosted to a transitional 

flight speed by either a rocket or another engine adding complexity, cost, and weight.   

Conventional fighter aircraft have been limited to flight Mach numbers of 2-3 due 

to the limitations of existing engines.  Commercial aircraft have been limited to sub-sonic 

flight with the exception of the expensive and now retired Concord.  Missiles have been 

powered by inefficient solid rockets for short ranges and relatively expensive expendable 

turbojets for longer ranges.  PDE systems could prove to be a replacement, in appropriate 

applications, to all the preceding engine concepts, especially when cost is a consideration.  

The PDE has the potential to combine high specific impulse with the capability to operate 

at both subsonic and supersonic Mach numbers.  Alternative architectures are exploring 

hybrid combined cycle concepts which may even propel space vehicles en route to space.  

Although there has not been a developed PDE put into production, computational and 

experimental evaluation of the concepts predict that PDEs could possibly operate more 

efficiently than a ramjet and even low bypass gas turbine jet engines while possessing 

less cumbersome design with little or no moving parts and simpler geometry [3].  

The relatively simple engine design and near absence of moving parts has caused 

PDEs to become an alternative propulsion concept for supersonic missions.  The Naval 

Postgraduate School (NPS) has already conducted research demonstrating the use of both 

gaseous and liquid fuels in a PDE including ethylene, propane, and JP-10 [4,5].  These 

fuels have been used in a PDE at NPS with the aid of an ethylene/oxygen initiator to 

initiate a detonation in the primary fuel/air mixture.  Although an operational PDE would 

not be competitive if penalized by the requirement to carry highly pressurized gaseous 

fuel and therefore, if to be competitive, it must be able to directly detonate liquid fuel-air 
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mixtures.  An initiator is often a small “pilot” combustor filled with an easily detonable 

mixture used to initiate the detonation wave, as it can be difficult to detonate fuel-air 

mixtures directly.   

A unique property of PDEs when compared to traditional engines is that they 

detonate the fuel-air mixtures where conventional air breathing engine platforms 

deflagrate their fuel-air mixtures.  By deflagrating a fuel-air mixture, a conventional 

engine increases the temperature of the working fluid while imposing a small pressure 

drop due to flow expansion and losses while increasing the entropy substantially. Near 

the exit of the combustor, flow is left at a high temperature and almost equal pressure 

state that can then be expanded through a turbine or accelerated through a nozzle to 

produce work or thrust.  Alternatively, a PDE detonates the fuel-air mixture through a 

supersonic combustion wave led by a shock wave in front that compresses the unburned 

mixture immediately prior to combustion. This method of combustion results in higher 

temperatures, higher pressures, and a relatively low entropy increase for the combustion 

products which can then be expanded or accelerated to produce work or thrust [6]. 

Due to the transient filling and combustion characteristics of PDEs they are 

inherently unsteady.  Since the combustion is extremely rapid, as soon as the detonation 

exits the engine, the process must be repeated in order to maximize the overall energy 

conversion rate and net thrust.  The thrust produced by the engine is directly dependant 

upon how often this combustion event can be repeated.  Operating a PDE at higher 

frequencies has the additional benefit that at high frequencies the unsteady thrust is 

dampened by the inertia of the PDE and becomes quasi-constant. Therefore much 

emphasis is placed on minimizing the cycle time and thus, increasing the operating 

frequency. 

The greatest challenge facing the continued development of PDEs is the reliable 

and rapid initiation of the detonations inherently required to operate the engine. This 

challenge has been identified as one of the critical and enabling technologies for PDEs.  

While methods exist to directly detonate a fuel-air mixtures they are either unrealistic or 

impose unacceptable losses to the system which will be discussed later.  Transient Plasma 

Ignition is a new ignition technology that when combined with an initiator geometry 
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containing turbulence/generating shock reflecting devices can substantially improve the 

timescales associated with ignition and the initiation of a detonation.  The strategy relies 

on first deflagrating the fuel-air mixture and then causing the deflagration to transition to 

a detonation and is commonly referred to as Deflagration-to-Detonation Transition or 

DDT.  The acceleration process is often achieved by placing obstacles in the flow path of 

the deflagration wave.  These obstacles cause turbulence and mixing of the unburned 

reactants and the combustion wave, as well as shock reflections thus increasing the 

effective flame surface and accelerating the deflagration to a detonation.  The fluid 

dynamics, thermodynamics and chemistry behind this process are complicated and there 

are numerous efforts being carried out throughout the world to model the process and 

predict obstacle effects.  

Previous work at NPS demonstrate successful operation of a PDE using gaseous 

ethylene/air mixture which used transient plasma ignition (TPI) for ignition and flow 

obstacles for detonation initiation.  A PDE was designed for this research that has 

eliminated the requirement for supplementary oxygen as well as enabling the use of a JP-

10, high-density liquid fuel.  Air flows through segments of this PDE were simulated 

using Computational Fluid Dynamics and experimentally evaluated in the laboratory at 

simulated flight conditions, including supersonic cruising conditions. 
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II. BACKGROUND 

A. DETONATION THERMODYNAMICS 
A discussion on the thermodynamics and structure of detonations is required in 

order to adequately explain how a PDE operates.  A detonation wave is a supersonic 

combustion wave that propagates through a gas, liquid or solid combustible mixture 

which involves a shock wave followed by a combustion front.  The shock compresses the 

substance thereby increasing it pressure, temperature, and overall reaction rate.  The 

temperature is locally increased beyond the auto-ignition condition for mixture and the 

energy released behind the shock further strengthens/reinforces the shock.  

Detonation and deflagration combustion waves can be more easily understood if 

discussed in the frame relative to the wave.  Figure 2 illustrates in a stationary one-

dimensional (1-D) planar wave [6].  In this frame of reference, the unburned gas 

approaches the combustion wave at velocity u1 with static thermodynamic properties ρ1, 

T1 and P1.  After combustion, the products move away from the combustion wave at 

velocity u2 and with static thermodynamic properties ρ2, T2 and P2.  Combustion 

experiments by Friedman indicated quantitative differences in these values based on 

whether the combustion was deflagration or detonation [7].  A summary of these 

experiments can be seen in Table 1. 

 
Figure 2.   Schematic Diagram of a Stationary 1-D Combustion Wave (Deflagration 

or Detonation) 
 

 Detonation Deflagration 
u1/c1 5-10 0.0001-0.03 
u2/u1 0.4-0.7 (deceleration) 4-16 
p2/p1 13-55 (compression) 0.98-0.976 (slight expansion) 
T2/T1 8-21 (heat addition) 4-16 (heat addition) 
ρ2/ρ1 1.4-2.6 0.06-0.25 

Table 1. Qualitative Differences between Detonation and Deflagration 
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The characteristics listed in Table 1 reveal that a detonation results in a 

tremendous increase in pressure whereas a deflagration actually imposes a small loss in 

pressure due to flow expansion.  The pressure increase, the slightly larger temperature 

increase and the lesser increase in entropy are what make the detonation a more efficient 

method of combustion.  The increase in pressure removes the requirement for a costly 

and complicated high pressure compressor, therefore potentially decreasing the cost and 

complexity of a PDE system when compared to turbo-machinery. 

Through the use of the conservation equations and an in depth thermodynamic 

analysis it can be shown that there is a relationship between a gases properties, pressure, 

density and ratio of specific heats, and the heat added to the gas [6,7].  This relationship, 

know as the Rankine-Hugonoit relation, is provided in Equation 1. 

2 1
2 1

2 1 1 2

1 1 1( )
1 2

p p p p qγ
γ ρ ρ ρ ρ

⎛ ⎞ ⎛ ⎞
− − − + =⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

     (1) 

Using this equation and plotting P2 versus 1/ρ2, for a fixed heat release per unit mass, the 

Hugonoit curve is created and is shown in Figure 3.  

 
Figure 3.   Hugonoit curve on P-versus-1/ρ plane 
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The Hugonoit curve, essentially, represents all of the mathematically possible 

values for P2 an ρ2 for a given set of initial values of P1, ρ1, and q. The values are divided 

into five separate regions, region V is a mathematical solution only and is not physically 

valid. Region I represents the possible values for P2 and ρ2 for the products of a strong 

detonation while region II represents the possible values for P2 an ρ2 for the products of a 

weak detonation. Similarly, region III represents the possible values for P2 an ρ2 for the 

products of a weak deflagration while region IV represents the possible values for P2 an 

ρ2 for the products of a strong deflagration. 

 

B. DETONATION INITIATION 
The ability to achieve the thermodynamic benefits of a detonation depends on the 

ability to obtain a detonation.  Two common methods exist to generate a detonation in 

fuel-air mixtures.  One can either directly detonate the fuel-air mixture or transition a 

deflagration to a detonation using obstacles in the combustion flow field. 

The direct initiation of a detonation employs the use of a high energy chemical or 

electrical ignition source which allows for an extreme release of energy over a relatively 

short period of time therefore causing the direct formation of the gas dynamic structure 

required for a detonation wave.  The use of an extremely high power electrical ignition 

source, in excess of 1000 Joules, that contains sufficient energy to cause a detonation has 

been demonstrated in a laboratory but through the use of heavy bulky equipment.  

Considering the weight, volume, and power requirements of an ignition system capable 

of the required ignition energy for an airborne system, this is not a viable option.  An 

alternative version of this first method involves the use of easily detonable supplementary 

gases.  It was found that the gain in detonability was offset by the reduction in specific 

Impulse (Isp) since the auxiliary oxygen used in the “initiator” gases must be considered 

as a “fuel” for Isp calculations.  Equation 2 shows that Isp decreases for a given thrust 

level as mass flow rate of fuel and/or required initiator reactants increases. While both 

methods have there shortfalls, they have both been proven to be effective in achieving 

rapid and reliable detonations. 
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initff
sp mm
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ThrustI
&&& +

==     (2) 

All gases and/or liquids carried onboard the vehicle are considered as fuel when 

calculating Isp.  Because the supplementary gases impose a negligible increase in thrust 

yet a substantial increase in mass flow of effective fuel, the Isp is reduced.  This method is 

further penalized by the fact that volume and weight allotments for the flight vehicle must 

be used for the auxiliary reactants. 

The mechanism of DDT is explained well in Kuo where he summarizes the 

transition using the following steps from reference 3: 

1. Generation of compression waves ahead of an accelerating 
laminar flame (see Figure 4). The laminar flame front is 
wrinkled at this stage. 

2. Formation of a shock front due to coalescence of 
compression waves (see Figure 4). 

3. Movement of gases induced by the shock, causing the 
flame to break into a turbulent brush (see Figure 4). 

 
Figure 4.   Streak Schlieren Photograph of the Development of Detonation 

 
4. Onset of “an explosion in an explosion” at a point within 

the turbulent reaction zone, producing two strong shock 
waves in opposite directions and transverse oscillations in 
between. These oscillations are called transverse waves 
(see Figure 5). The forward shock is referred to as 
superdetonation and moves into the unburned gases. In the 
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opposite direction, a shock moves into the burned gases and 
is know as retonation. 

 

 
Figure 5.   Streak Schlieren Photograph of the Onset of Retonation 

 
5. Development of spherical shock at the onset of the 

“explosion in an explosion” with a center located in the 
vicinity of the boundary layer (see Figure 6). 

 
Figure 6.   Flash Schlieren Photograph of the Onset of Retonation 

 
6. Interaction of transverse waves with shock front, retonation 

wave, and reaction zone (see Figure 7). 
7. Establishment of a final “steady wave” as a result of a long 

sequence of wave inter-reaction processes that lead finally 
to the shock deflagration ensemble: the self-sustained C-J 
detonation. 
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Figure 7.   Flash Schlieren Photograph of Transverse Waves Set up at the Onset of 

Retonation 
 

All detonations possess a particular structure. The understanding of the structure 

of a detonation wave has improved greatly due to experimental efforts in the 1960’s. The 

original model assumed for a detonation wave was a 1-D structure.  This structure is 

known as a 1-D Zeldovich–Neumann–Döring (ZND) detonation wave and is shown in 

Figure 8.  The 1-D model consisted of a leading shock wave followed by an induction 

zone the shock wave where the reactants are at a higher pressure and temperature due to 

the compression heating.  It is assumed that no reactions occur until a specified time after 

the shock wave. This assumption is valid as the thickness of the shock wave is only of the 

order of two to three molecular mean free path lengths (λ).  Most of the reactions, and 

therefore heat release, were believed to occur in a thick deflagration zone after the shock 

wave.  The induction zone is the region behind the shock where the reaction rates 

increase slowly and the pressure and density are almost constant.  The reaction zone 

follows the induction zone and is where the properties quickly change as the reaction rate 

increases to an extremely high value. Following completion of the reaction the properties 

relax to near equilibrium values.  
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Fi 3 D t ti W P fil (F [3])Fi 3 D t ti W P fil (F [3])  
Figure 8.   Variation of physical properties through a ZND detonation wave 

 

In the early 1900’s scientists realized that there was also a three dimensional (3-

D) structure to detonation waves and detonations could not be simplified to 1-D 

structures. In reference 3, Kuo characterizes the 3-D detonation as follows: 

The detonation-wave structure is characterized by a non-planar 
leading shock wave which at every instant consists of many curved shock 
sections which are convex toward the incoming flow. The lines of 
intersection of these curved shock segments are propagating in various 
directions at high velocities (see Figure 9). 
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Figure 9.   Smoked-foil record and schematic diagram of symmetric planar 

interaction 
 

The third shock, R, (see Figure 10) of these intersections extends back into 
the reactive flow regime and is required for the flow to be balanced at the 
intersection of the two convex leading shock waves. In general, the flow in 
the neighborhood of the shock front is quite complex. The schematic 
diagram of symmetric planar interaction is shown in Figure 10. 

 
Figure 10.   Schematic Diagram Showing the Shock-wave Pattern and Triple Point in a 

Two-dimensional Supersonic Flow Passing Through a Convergent Ramp Section 



13

 

A detonation wave is the fundamental process within a PDE that enables the 

system to achieve higher thermal efficiencies. The benefits and challenges of the 

detonation, when used in propulsion, have been explained and can now be explored in the 

application to a PDE 

 

C. PDE THERMODYNAMIC CYCLE 
The PDE cycle differs from the turbo- and ramjets in that it detonates its fuel air 

mixture rather than using a deflagration process as in turbo- and ramjets.  The PDE 

operates by detonating a volume filled with a fuel-air mixture through a detonation wave 

which propagates down the combustor.  Recall that a detonation wave consists of two 

segments, a leading shock wave followed by a combustion wave.  The shock wave 

compresses the air, through a non-isentropic process, thereby replacing the compressor 

stage required in a turbojet.  The detonation wave is immediately follow by combustion 

wave which then combusts the now compressed air-fuel mixture.  Similar to the ramjets, 

the PDE has almost no moving parts as it needs no compressor and therefore no turbine. 

Due to the detonation process, the PDE cycle combusts the fuel-air mixture at 

approximately constant volume conditions whereas a turbo- or ramjet combusts its fuel-

air mixture at approximately constant pressure.  A constant volume combustion process is 

more thermodynamically efficient than one at constant pressure, in that at constant 

volume the combustion increases both the pressure and the temperature therefore 

releasing more energy, whereas a constant pressure the combustion process increases 

only the temperature. In order to explore the PDE cycle and compare it to the Brayton 

cycle in a Ramjet both cycles have been simulated using a combustion code named 

CEQUEL and compared with other propulsion methods in an ISP plot seen in Figure 11 

with varying flight Mach number. CEQUEL is described by its owners in this 

introductory statement [8]: 

CEQUEL stands for “Chemical EQUilibrium in excEL”, and is based on 
SEA’s CCET™ (Compressible Chemical Equilibrium and Transport 
properties) code.  CCET was derived from NASA Glenns Gordon-
McBride CEA (Chemical Equilibrium with Applications) code.  Cequel 
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provides access to most of capabilities available in CCET, but as a 
function within Microsoft Excel.  This eliminates the need to cut and paste 
from external thermodynamics codes’ output files into Excel, and provides 
the additional power of allowing the output of one Cequel function to be 
used as the input to other Cequel functions.  This allows the user to 
quickly evaluate many “what-if” scenarios as well as to utilize Excel’s 
built in solvers and optimization routines. 

NASA Johnson Space Flight Center funded the initial conversion of 
CCET into a dynamically linked library (DLL), and a limited VBA 
interface for a specific application.  Since then, SEA has developed 
Cequel, a suite of general Excel functions for the TP, HP, SP, UV, SV, TV 
thermodynamic equilibrium point problems, and the rocket problem (area 
and pressure ratios).  In addition, Cequel contains a non-reacting mixing 
function, which combines isobaric flows with different temperatures and 
species. 

 
Figure 11.   Comparison of Propulsion Technologies Using Combustion Simulation 

 

The PDE is often compared to ramjets due to the benefits existing for supersonic 

inlet conditions.  An analysis of the PDE and ramjet cycles was performed using 

CEQUEL for a flight Mach number of 4.  Identical inlet losses, MIL-SPEC, and flight 

condition, M=4, were used in the analysis.  A schematic of the various stages present in a 

PDE and ramjet are seen in Figures 12 and 13. 
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Figure 12.   Schematic of a Generic PDE and Appropriate Stages 
 

 
Figure 13.   Schematic of a Generic Ramjet and Appropriate Stages 

 

Stages 1,3,6 and 7 of the PDE are of specific interest to a cycle analysis.  Stage 1 

represents the conditions of the air flow in front of the flight vehicle.  Stage 3 is the 

conditions of the flow after the inlet diffuser and following the valve system, if using a 

valved PDE.  Stage 6 represents the conditions following the combustor after the 

detonation has completed and the flow properties have reached their equilibrium values.  

Finally Stage 7 represents the exhaust plane of the nozzle.  Similarly, the stages of 

interest to the analysis of a ramjet are stages 1,2,6 and 7.  Where stage 1 represents the 

condition of the air flow in front of the flight vehicle and stage 2 represents the condition 

of the flow after the inlet.  Stage 6 represents the conditions following the combustor.  

Finally Stage 7 represents the exhaust conditions at the nozzle exit plane. The properties 

of the flow as determined using the CEQUEL combustion code at the four stages of 

interest have been tabulated (Table 2).  Two methods of analyzing the cycles have been 

used and include a Temperature-entropy (T-s) diagram to determine the Isp of the engine 

and a Pressure-volume (P-v) diagram. 
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Figure 14.   Temperature-Entropy Diagram for a Generic PDE at M=4 
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Figure 15.   Temperature-Entropy Diagram for a Generic Ramjet at M=4 
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The specific work equations for both the PDE and the ramjet can be derived as 

follows; 

( )
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Figure 16.   P-V Diagram for a Generic PDE at M=4 
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Figure 17.   P-V Diagram for a Generic Ramjet at M=4 

 

Assuming a quasi-steady approach allows the use of Equation 3.  This equation and 

the entropy difference available to the nozzle can be used to determine the fuel based 

ISP.The properties at each stage of each cycle in Tables 2 and 3 are used in Equation 3 to 

determine the ISP from each cycle and can be seen in a T-s diagram in Figures 14 and 15 

for the PDE and ramjet respectively. As depicted in the Figures the PDE demonstrates a 

higher temperature change at a flight Mach number of 4 and hence a higher ISP.  

7 1(1 )
sp

f u uI
f g

+ −
=

×
 where,  7 6 7( )Pu C T T= −    (3) 

PDE Cycle
T P Gamma S v

1 216.6667 18.7485714 1.39 0 3.316697
3 892.67 1639.74 1.39 165.0445 0.156241
6 2829.66 4185.46901 1.295 1349.625 0.194031
7 762.66 18.7485714 1.32 1349.625 11.67474  

Table 2. Flow properties for a PDE at M=4 at stages 1,3,6 &7 
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Brayton
T P Gamma S v

1 216.66 18.748 1.39 0 3.316696
2 892.6392 1657.13786 1.39 162.0074 0.154596

6 2211.825 1639.47778 1.24 1510.592 0.387193
7 859.3323 18.748 1.26815 1510.57 13.15492  

Table 3. Flow properties for a Ramjet at M=4 at stages 1,2,6 &7 
 

The properties at each stage of each cycle in Tables 2 and 3 are used in Equations 

3 and 4 to determine the specific work from each cycle and can be seen in a P-v diagram 

in Figures 16 and 17 for the PDE and ramjet respectively.  The PDE demonstrates its 

improved performance with a greater specific work at a flight Mach number of 4. 

The results of this analysis are seen in Table 4 where each cycle is listed with its 

corresponding entropy change, net work, and fuel based ISP.  This table indicates that the 

PDE outperforms both the turbo- and ramjets thermodynamically.   

Entropy Change Net Work Specific Impulse
 (kJ/kg ) (kJ/kg) Isp (s)

PDE 1.350 1803 1772
Ramjet 1.511 1092 1319  

Table 4. Cycle comparison for PDE and ramjet engines at M=4 

 

D. PERFORMANCE CONSIDERATIONS 
A PDE can vary the thrust produced by two methods.  The frequency of operation 

can be increased, where the aggregate impulse per cycle is relatively constant and the 

increase in frequency would therefore increase the impulse per unit time.  The second 

method to vary thrust is by fill fraction where, for a given frequency, the volume of fuel-

air mixture being processed per cycle can be altered by partially filling the PDE with 

fuel-air mixture.  The mass flow per unit time of reactants will be varied therefore 

varying the thrust as seen in Equation 6. 

( )( )7 11aThrust m f u u= + −&       (6) 

 The PDE operational frequency may be increased if the total cycle time can be 

reduced sufficiently to achieve the desired frequency.  Equation 7 shows the time 

components present in a PDE. 
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/ _cycle refresh fill ignition delay initiation detonation blowdown purget t t t t t t= + + + + +  (7) 

where, /refresh fill refresht t=  or fillt  which ever is greatest, where initiator
refresh

refresh

lt
M c

=  and 

combustor
fill

fill

lt
M c

= , Mrefresh is the average Mach number at which the PDE initiator is refreshed 

with new reactants.  This can be thought of as a non-dimensional refresh mass flow rate 

and is defined as: 

refresh refresh initiator
refresh

CL CL

m AVM
C RT

ρ

γ
≡ =

&
  (8), similarily fill fill combustor

fill
CL CL

m AVM
C RT

ρ

γ
≡ =

&
 (9) 

Where lcombustor is the length of the combustor portion of the PDE and linitiator is the length 

of the initiator which must be long enough to achieve transition to initiation of a 

detonation wave. The ignition delay, tignition delay, is the time between the ignition event 

and a fully developed flame and is dependant upon the stoiciometry, local flowfield, and 

ignition physics, tignition delay is on the order of 3.5 ms for most practical hydrocarbon fuels. 

 
det

initiation
initiation

onation

lt
M c

≈   (10),  det
det

combustor
onation

onation

lt
M c

=   (11), PDE
blowdown

products

lt
c

≈   (12), 

and tpurge is the amount of time flow occurs between the last of the hot products and first 

of the new reactants and is design dependant such that it is sufficient to separate the hot 

products from the new reactants.  Decreasing any of these preceding times can result in a 

higher possible operating frequency and thus a higher producible thrust.  Of the six time 

segements that the cycle time depends on, only tdetonation and trefresh/fill can realistically be 

decreased to substantially decrease the overall cycle time.  Recall from Equation 11 that 

tdetonation is directly proportional to the length of the combustor.  Therefore, if one can 

decrease length of the combustor the frequency of operation can be increased.  However, 

keeping the same cross-sectional area, a decrease in the length of the combustor would 

also cause a decrease in the volume of fluid being processed per cycle and hence have a 

decreasing effect on the thrust.  The second method to decrease the cycle time would be 

to decrease the trefresh/fill parameter.  This can be accomplished by simply increasing the 

mass flow rate at which the initiator and combustor are filled.  This can be done to such a 
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point that the flow becomes choked.  The pressure drop associated with refreshing the 

combustor at high subsonic Mach numbers outweighs the gain in frequency and the 

velocities in the ignition region often become sufficiently high to prevent ignition of the 

fuel-air mixture. Using a combination of these two methods the cycle time can be 

decreased to increase the thrust produced by the engine. 

 The thrust produced by the engine can also be modified by altering the length of 

the combustor or its diameter, or a combination of both.  This increases the volume and 

therefore mass of fluid processed by the engine per cycle. As previously mentioned, the 

length of the combustor and the operating frequency are linked by an inverse relationship. 

Therefore there is little gain from increasing the length of the combustor.  Increasing the 

diameter of the combustor is another way to increase the mass flow being processed by 

the engine.  However, in order to support the 3-D structure of a detonation the flow field 

diameter is limited to a value that will support a detonation structure and is often near one 

cell size [6].  Once the detonation is established at a given diameter the flow field 

diameter can be stepped up to a new value as long as the step is sufficiently small enough 

not to ensure the detonation does not fail through the diffraction proccess.  Obviously 

each of these discrete steps must occur over some length to allow the detonation to re-

establish its strength before attempting another increase in diameter.  These additional 

lengths in the flow field will, as previously explained previously, increase the over cycle 

time and decrease the maximum attainable frequency. 

 A combination of both methods for altering the thrust attainable from a PDE 

should be used together in an attempt to achieve an optimum configuration.  This, of 

course, will depend upon the PDEs application whether that be for a long slender missile 

or a flight vehicle in which volume for payload is important. The PDE could be tailored 

to its application allowing for the specific concerns of each possible application. 



22

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



23

III. DESIGN & MODELING 

The combustor design of the PDE evaluated during this research is intended to be 

used as the initiator unit in a split flowpath design.  The initiator combustor possessed 

various turbulence devices which promote the DDT process, but at a performance penalty 

due to the relatively large pressure drop through the unit.  Although approximately 25% 

of the total airflow will pass through the initiator unit, the remaining flow will by pass 

coaxially around the unit and be directed into the main combustor. Figure 18 shows a 

section view of the proposed design layout. 

 
Figure 18.   New PDE Initiator Design With Combustor Section View 

 

The ignition system used was a Transient Plasma Ignition (TPI) developed at the 

University of Southern California (USC) by Martin Gundersen and his research group 

[9]. The interface for the TPI system was tailored to lend to the research goals of this 

paper. 

A transient plasma discharge, sometimes called pulsed corona discharge, depicted 

in Figure 19 [10] has unique fundamental properties and benefits when compared to a 

traditional spark. 

   
Figure 19.   Corona from TPI 

Primary 
Combustor Flow 

Initiator 
Flow 
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Due to the discharge physics, hundreds of “streamers” can readily ignite a mixture at tens 

to hundreds of regions simultaneously.  Traditional capacitive discharge spark ignition 

discharges at a single location and typically contains electrons with energy levels of 1-3 

eV.  The TPI system delivers pulses of 70 to 100 kV within 50 to 100 ns at currents from 

450 to 600 A, as depicted in Figure 20 [11], and creates electrons with energy levels of 

10-30 eV.  However, the total energy input is less than one Joule and is comparable to 

capacitive discharge systems. 

 

 
Figure 20.   Voltage and Current from TPI 

 

Results obtained during the early stages of this research indicated deficiencies in the 

TPI electrode holder design used in previous research at NPS. The previous TPI holder 

used at NPS was made of Macor, an insulating ceramic, with a threaded Macor cap to 

secure the TPI electrode.  The air gap present within the mating threads of the two pieces 

of Macor resulted in an electrical path, between the TPI electrode and the ground, shorter 

than that between the bare electrode and the chamber wall.  Due to this path the TPI 

would occasionally arc through the gap rather than discharge a corona at the electrode.  

Additionally, the insulator cap was under tension which is not favorable for ceramic 
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composites (Figure 21).  A new TPI holder was then designed and can be seen in Figure 

22.  The new design eliminated the shorter electrical path through the thread gap and 

resulted in a design based on compression of the Macor, not tension. 

 
Figure 21.   TPI Holder Screw Cap Failure 

 

 
Figure 22.   TPI Electrode Holder and Insulator Design Installed in Ignition Section 

 

The PDE initiator designed for this research, as seen in Figure 23, was designed 

based on results from previous research obtained on a pre-existing engine [12]. Following 

the ignition section a spiral or ringed initiator can be installed.  A hotwire anemometer 
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was used to explore the flow field present in the PDE used during previous research at 

NPS [12]. The data collected shows the exit velocity, exit turbulence and pressure loss 

though the PDE at varying flow rates.  The velocity and turbulence at the exit plane 

centerline with varying flow rates and different flow conditioning screens (Figure 24) can 

be seen in Table 5. 

 
Figure 23.   New PDE Initiator Design Architecture 

 

 
Figure 24.   Flow Conditioning Screens 

 

U (m/s) TI (%) U (m/s) TI (%) U (m/s) TI (%) U (m/s) TI (%)
106.5279 10.96297 101.4373 12.01022 111.0715 9.067408 111.4635 9.242226

Clean 1/8" grid 3/16" grid 1/4" grid

 
Table 5. Centerline Velocity and Turbulence Effects from Flow Conditioning Screens 
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The results indicated that the flow conditioning screens had little to no effect on 

the turbulence of the flow field and actually were detrimental to the ignition success rate 

since they removed the recirculation region at the head end of the combustor [13].  For 

this reason the screens were not incorporated into the new design.  

Information was also obtained using an IR absorption spectroscopy diagnostic to 

determine the equivalence ratio of the fuel-air mixture for varying air flow rates for the 

use of 1 to 4 fuel injectors firing.  Using the data, found in Table 6, the approximate fuel 

flow rate through each fuel injector was determined as a function of oil pressure. This 

effective fuel flow rate through each fuel injector was also determined for each of the 

four oil pressure settings and can be seen in Figure 25. 

Date Run Injectors
Oil Press 
(kPa)

Equiv. 
Ratio Air flow (kg/s)

Fuel flow per 
injector (kg/s)

25-Apr-06 14 4 5239 0.525214 1.2706 0.011178
25-Apr-06 15 4 5239 0.951066 0.6336 0.010093
25-Apr-06 16 4 5239 1.202596 0.4857 0.009784
25-Apr-06 17 4 5239 1.154576 0.5560 0.010752
25-Apr-06 18 4 5239 0.737 0.8792 0.010854

26-Apr-06 1 4 6031 1.236071 0.6339 0.013124
26-Apr-06 2 4 6031 0.904982 0.8800 0.013340
26-Apr-06 3 4 6031 0.769486 1.0763 0.013873
26-Apr-06 4 4 6031 0.979221 0.7814 0.012817

26-Apr-06 5 4 6893 1.054939 0.8798 0.015546
26-Apr-06 7 4 6893 0.949926 1.0764 0.017126
26-Apr-06 8 4 6893 1.235142 0.7815 0.016167
26-Apr-06 10 4 6893 0.882824 1.1737 0.017356

27-Apr-06 23 4 7754 1.68 0.63505 0.017870
27-Apr-06 24 4 7754 1.4 0.7816 0.018329
27-Apr-06 25 4 7754 1.21 0.8793 0.017821
27-Apr-06 26 4 7754 1.02 1.0747 0.018361
27-Apr-06 27 4 7754 0.89 1.2701 0.018934  

Table 6. Fuel Injector Characterization for Varying Fuel Pressure 
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Figure 25.   Fuel Injector Flow Rate at Varying Fuel Pressure 

 

   Previous research indicated that a JP-10 aerosol required a substantial convective 

time to vaporize, resulting in a minimum length manifold section to be designed to 

deliver a vaporized mixture to the combustor.  After the flow reaches the engine, it enters 

an ignition section through four 45 or 60 degree arms, seen in Figure 26.  The ignition 

section has a larger cross sectional area to decrease the flow velocity and thus aid the 

ignition process.  

Figure 26.   PDE Initiator Section View 
 

Ignition Section 

Delivery Arms 



29

After ignition, the combusting flow is accelerated into the initiator through a 

convergent section and into the smaller diameter initiator combustor containing ring 

obstacles or spiral which generate turbulence and cause shock reflections to occur which 

aid the detonation initiation process.  The detonation exits the initiator and enters the 

main combustor in discrete diffraction steps, as seen in Figure 18, in order to keep the 

detonation from failing.   

It was eventually determined that the geometry of the rings and the ring holders 

was preventing the formation of a detonation due to excessive blockage.  The cell size 

required for a JP-10/air detonation was consequently too large to form in the in the space 

between the support spars holding the rings. The initiator was then redesigned using a 

spiral for turbulence generation to aid in the DDT process.   

The proposed PDE design differs from previous designs due to the use of a 

fuel/air initiator section and a separate combustor section.  Since, there are two separate 

flow paths; the design is referred to as a Split-Path Design.  The steps of the operational 

cycle of this new design are shown in Figure 27: 

1. The start of the engine cycle consists of a continuous airflow through all 

sections of the engine. 

2.  A fuel air mixture begins to enter each tube, the initiator and the 

combustor. 

3. Then the initiator is filled completely with a fuel-air mixture and the 

combustor portion aft of the initiator exit is also simultaneously filled 

with the fuel-air mixture. 

4. During step four, the ignition event occurs causing a deflagrating 

combustion wave to begin to move down the initiator. 

5. The combustion wave is accelerated along the initiator due to the existing 

turbulence devices until it transitions to a strong detonation. 

6. The strong detonation from the initiator then diffracts and enters the 

combustor through sections of discrete diameter size increases such that 

the detonation is allowed to enter a larger diameter section without 
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completely failing and is then given sufficient length to recover the 

strength of the initial detonation wave.  The detonation then travels the 

length of the combustor to the combustor exit. 

7. After the detonation has exited the combustor, a rarefaction wave is 

formed and propagates toward the head end of the engine. 

8. Finally, at step eight, the rarefaction wave has traveled the length of the 

entire engine reducing the pressure to the initial value and the volume is 

now prepared for the cycle to repeat. 

 
Figure 27.   New PDE Design Cycle Steps 

 

The split-path PDE design introduces many potential benefits for the overall 

system.  It allows the use of a relatively low energy ignition source to obtain a 

deflagrating combustion wave which can then be accelerated through an obstacle field.  

The losses associated with the obstacle field are then localized to a small portion of the 

overall flow path and should minimize the overall system performance loss.  Another 
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advantage to the split-path design is the fact that the co-flowing main combustor mixture 

convectively cools the initiator section. 

The airflow through various configurations of the initiator unit and split-path 

geometry was modeled using three computational packages developed by CFDRC and 

sold by ESI Group. The software, CFD-GEOM, is a geometry and grid generation 

system, with an extensive set of geometry creation and manipulation, CAD import, and 

mesh generation capabilities. CFD-GEOM provides meshes for ESI Group's CFD solver 

packages CFD-ACE+ and CFD-FASTRAN.  The software allows the user to build a 

computational domain based on the geometry of the desired model.  CFD-GEOM was 

used to create the axis-symmetric geometries of three possible configurations for the 

initiator, of which the lower boundary of each model representing the axis.  These 

geometries were then processed using GEOM’s grid generation system to generate the 

three grids seen in Figures 28, 29 and 30 used to model the designed initiator, the ramped 

initiator and the clean initiator respectively. 

 

 
Figure 28.   Grid Model of Initiator with Ring Turbulence Generators 
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Figure 29.   Model of Initiator with Ramp Turbulence Generators  

 

 
Figure 30.   Grid Model of Initiator with No Turbulence Generators 
 

Figure 28 shows the decreased grid spacing near the 3/16” ring cross-section since 

high flow gradients in that region were anticipated.  Similarly, in Figure 29, the grid 

density was increased in the region near the end of the 3/16” ramp to accommodate flow 

gradients that were suspected to be large due to the sudden change in geometry. Finally, 

the grid density in the clean initiator model and the initiator with ramps model is 

increased toward the upper boundary as flow gradients near walls are always large due to 

boundary layer effects.  These models were created to give results on qualitative trends. 
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A model of the initiator with a spiral was not created due to the inherent requirement for 

a 3-D model.  

A model of the initiator and combustor combination was also created (Figure 31).  

This was done to examine the propagation of a detonation or shock wave through the 

initiator and into the combustor via the discrete diameter steps. 

 The boundary conditions for all the models consisted of a symmetry boundary, 

wall boundaries, an inlet boundary and an outlet boundary. Once the models were 

complete they were exported to a *.DTF file that can be read by the solver program, 

CFD-ACE. 

The steady state CFD simulations were performed using the flow module of CFD-

ACE.  It allows the user to model various gas or liquid systems. The code solves the 

Navier-Stokes differential equations discretized over a finite volume allowing internal 

and external flows at sub-sonic velocities to be simulated yielding a numerical solution of 

the flow fields. 

The conditions used for the simulations performed for this research are tabulated 

in appendix A, CFD Settings. The settings for each simulation were selected based on the 

expected values through the engine flow path and values of which were known to be of 

interest.  The solver settings were selected in the interest of obtaining quickly converging 

and accurate solutions. The turbulence field within the modeled flow was also explored. 

Turbulent flow is the common flow condition encountered in a large number of 

applications in various industries. In general, any moderate to high Reynolds number 

flow problem will involve turbulence. Turbulence often has a strong influence on 

momentum as well as heat and mass transfer.  Due to the diverse range of turbulent flow 

problems a wide choice of turbulence models are available in CFD-ACE+ and CFD-

FASTRAN. These include Reynolds Averaged Navier Stokes (RANS) models as well as 

Large Eddy Simulation (LES) models. For this research, the standard k-ε model was used 

exclusively [14].  The setup and simulation for the transient CFD simulations were 

performed using CFD-FASTRAN, a density-based finite-volume solver for compressible 

flows. The solver incorporates higher-order numerical schemes and advanced physical 

models for application to flow problems. 
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The actual set-up conditions for the transient simulations performed for this 

research are also tabulated in appendix A, CFD Settings. The settings for each simulation 

were selected based on the actual expected values through the engine and values of which 

were known to be of interest.  CFD-FASTRAN solves the full Navier-Stokes equations 

using a density-based finite-volume formulation and higher order differencing schemes 

for the accurate prediction of subsonic, transonic or hypersonic flows.  CFD-FASTRAN 

employs state-of-the-art turbulence models for predicting the effects of turbulence within 

boundary layers and within separation regions [15].  The flow field of the simulation 

using the PDE model was initiated with an initial velocity of 200 m/s, a pressure of 150 

kPa and a temperature of 600 K.  A portion of the model was a driver section used to set 

up a shock wave inside the initiator.  The driver section had an initial velocity of 0 m/s, a 

temperature of 2000K and a pressure of 2 MPa.  A portion of the model is show in Figure 

31.  The figure shows the grid spacing present in the main combustor, the discrete 

diameter change regions, and initiator region which has the same grid space at the driver 

region.

 

 
Figure 31.   Grid Model of PDE with No Turbulence Generators 
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VI. EXPERIMENTAL SETUP 

A. PDE 
The initiator section of the PDE is shown in Figure 32 and consisted of an ignition 

section and a reduced diameter obstacle field.  The ignition section had an inner diameter 

of 7.8 cm and a length of 91.4 cm.  This section housed the TPI electrode and provided a 

concentric geometry relative to the electrode, to allow for a reliable transient plasma 

corona discharge. This section also allowed for a relatively slower flow field, to aid the 

ignition process.  Following the ignition section, a convergent section reduced the 

diameter to the initiator where obstacles were used to accelerate the deflagration wave to 

greater velocities thereby reducing the DDT timescale.  The fuel air mixture entering the 

PDE initiator was provided by the upstream fuel manifold which injects JP-10 into the 

flow through up to four prototype fuel injectors. The prototype fuel injectors used 

pressurized oil provided by an oil pump to hydraulically actuate a plunger within the 

injector which physically injected the JP-10.  The oil pump provided oil pressure ranging 

from 5000 kPa (750 psi) to 10000 kPa (1500 psi). 

 
Figure 32.   PDE Initiator Experimental Set-up 



36

 

 

 

B. VITIATOR 
A vitiator was used to heat the air entering the PDE to simulate combustor inlet 

flow conditions at different flight conditions, including supersonic cruise velocities.    

The vitiator burned a hydrogen/air mixture to produce high temperature air.  Oxygen was 

then introduced into the air delivery system downstream of the vitiator to restore the 

oxygen that was consumed in the combustion process, thereby correcting the mass 

percentage of oxygen to that of “standard” air.  The vitiator was started by a hydrogen/air 

torch, sparked by a high voltage transformer and spark plug.  The vitiator is shown in 

Figure 33.   

 

 
Figure 33.   H2/O2 Vitiator 

 



37

The operating temperature range of the vitiator was from 473 K to 800 K resulting 

in air entering the combustion chamber as high as 600 K.  The vitiator, used in 

conjunction with high pressure air supply, provides the ability to deliver air flow at the 

specific pressures and temperatures required to simulate the combustor inlet flow 

conditions for the flight Mach number range of interest. For example, providing an air 

flow at 250 kPa and 490 K corresponds to the combustor inlet flow conditions of a PDE 

operating at an altitude of 13000 m (40000 ft) and flying at Mach 2.5 with a Mil-Spec 

(MIL 5007-D)  Inlet (87 % pressure recovery). 

 

C. TEST CELL AND PDE CONTROL  
Control of the test cell and PDE was accomplished using a PC located inside the 

control room.  This PC controlled the test cell by running National Instruments Labview 

8.0, which was linked to a NI PXI-1000B controller inside the test cell through the 

internet and the PXI IP address.  Additionally, within the control room was a BNC pulse 

generator, used to send fuel valve and ignition trigger signals to the solid state relays in 

the test cell.  Master switches for 28 VDC and 110 VAC power were located in within the 

control room, and the capacity to shutdown the test cell in the event of an emergency.   

The control of all the supply gases was accomplished through TESCOM ER3000 

regulator control units and software. 

All ball valves and solenoid valves could be controlled through the Labview 

control and would immediately close if the facility was disabled through software or if 

the emergency stop button was manually depressed.     The unswitched 110 VAC power 

was used principally for instrumentation such that pressure transducers and temperatures 

could always be monitored.  A schematic diagram of the facility control and the Labview 

graphical user interface are presented in Figures 34 and 35 below, while the wiring tables 

and diagrams are included in the Appendix C. The Electrical Relay assignments for these 

controls can be seen in Table 14 in appendix C and the test cell operating procedure is 

contained in appendix D. 
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Figure 34.   Facility Control Schematic 
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Figure 35.   Test Cell #2 Graphics-User Interface 

 

D. DATA ACQUISITION 
Data acquisition was accomplished by the control PC which was linked to the 

PXI-1000B.  Installed in the PXI-1000B was a PXI-6031E monitoring 16 channels at 1 

kHz which included the temperatures at the main air choke, the engine combustor, and 

the line pressures of the supply gases as well as the thrust from the linear displacement 

sensor. High speed data was acquired at 500 kHz per channel using a PXI-6115 which 

monitored 4 Kistler pressure transducers mounted on the initiator portion of the PDE 

three of which are seen in Figure 36.  The four Kistler pressure transducers were installed 

inside cooling jackets and were able to measure pressure at four of twelve possible 

locations (Figure 36).  A Waverunner Oscilloscope was used to visually monitor the 

output of the pressure transducers as well as measure the output voltage and amperage of 

the TPI to verify a corona discharge was being achieved.  Tables of the data acquisition 

wiring are included in Appendix C.   
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Figure 36.   Kistler High Speed Pressure Transducers 

 

 

 



41

VII. RESULTS 

Computational and experimental results were obtained during this research. The 

computational methods and modeling of the proposed flow fields generally agreed well 

with the experimental results with the exception of the turbulence data.  The 

discrepancies between the two methods can be attributed to simplifications made to the 

modeled geometry such that each model could only be created in a 2-D axis-symmetric 

geometry varying in radius and depth only. 

 

A. CFD 
The CFD simulations indicated that an initiator with a series of low profile ramps, 

vice a spiral or rings, would generate a greater value of turbulent kinetic energy.  

However, the simulations indicate ramps will also have a slightly greater pressure drop 

through the initiator.  Since TKE is an important parameter for flame acceleration, this 

indicates that an initiator with ramps would perform better than its ringed counterpart if 

the length of the obstacle field could be shortened to reduce the total pressure loss while 

simultaneously reducing detonation initiation times.  

Spatial results for turbulent kinetic energy (TKE) are presented in Figure 37 for a 

Mrefresh number of 0.25.  The centerline TKE and turbulence intensity (TI) results of the 

steady-state simulations within the initiator designs can be seen in Figure 38 for varying 

refresh Mach numbers.  The results indicate that TKE tapers off toward higher refresh 

Mach numbers with an initiator using ramps to induce the turbulence, whereas the TKE 

continually increases as refresh Mach number increases for an initiator employing rings. 

The turbulence intensity does not vary greatly with refresh Mach number but did 

decrease slightly for both the ramp configuration and the ringed configuration. 
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Clean Initiator 

 

Initiator with Rings 

 
Initiator with Ramps 

 
Figure 37.   CFD Results for Flow Field Turbulence Comparison at Mrefresh = 0.25  
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Figure 38.   Exit Centerline CFD Results for Turbulence Generated by Obstacles  

 

The pressure loss along the one meter section of each initiator configuration was 

also measured in each of the simulations performed, the results of which can be seen in 

Figure 39.  The pressure loss was also simulated for the initiator with rings configuration 
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and characterized with the conditions representative of post-detonation flowing through 

the initiator at steady state.  The computational results revealed that the initiator with 

ramps possessed the highest pressure drop followed by the ringed configuration with 

refresh conditions.  Surprisingly, the ringed configuration with post-detonation conditions 

flowing through it resulted in lower total pressure loss.  This was believed to be due to 

the fact the drag through the obstacle path was due to primarily pressure drag vice 

viscous drag. Although the viscosity was greater in the gas with post-detonation 

properties, the high pressure compresses the gas causing it to flow at lower velocities and 

result is less pressure drag. Obviously the initiator in the clean configuration resulted in 

the lowest pressure drop. 
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Figure 39.   CFD Results for Pressure Drop Over Obstacles  

 

The total pressure drop results were also correlated to the mass flow rate through 

each initiator configuration to demonstrate that the data represented as a 3rd order 

polynomial with a R-squared values very close to unity, as seen in Figure 40. This does 
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not occur when the data is presented against refresh Mach number because refresh Mach 

number is non-linear in this application. 
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Figure 40.   CFD Results for Pressure Drop Over Obstacles Versus Mass Flow Rate 

 

The simulation results of the shock wave propagating through the initiator and 

into the combustor via the three discrete diameter step can be seen in Figures 41 and 42.  

The structure of the shock wave is seen in Figure 41 immediately after exiting the 

initiator.  The features that should be noticed are the lambda foot at the base of the 

renewed shock in the first diameter step as well as the re-formation of the normal shock 

wave as it progresses aft. 
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Figure 41.   CFD Results for Shock Propagation from Initiator 

 

 
Figure 42.   CFD Results for Pressure Shock Propagation to Combustor 

 

B. EXPERIMENTAL 
The performance of the PDE design was tested using a 6 degree of freedom 

(6DOF) thrust stand as well as a displacement thrust measurement, pressure transducers, 

thermocouples and a hotwire anemometer.  The effects of the pressure loss through the 

initiator were also examined.  Additionally, a hotwire anemometer was used to determine 

the velocities and turbulence present in the flow so that they could be compared with the 

computational results as well as the observed detonability. Through pressure 

measurements along the initiator the verification and location of detonations were 

determined. 

Main Flow  

Main Flow  

Initiator Flow  

Initiator Flow  
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Velocity, pressure, and turbulence measurements were taken at varying flow rates 

through the ringed initiator.  The experimental measurements have indicated that the 

actual TKE and TI values within the initiator, shown in Figure 43, were much lower than 

that predicted by the CFD indicating inaccuracies in the simulations.  The results indicate 

that TKE increases with increased flow rate but tapers off toward higher refresh Mach 

numbers in excess of approximately 0.16 kg/s.  Accordingly, the TI decreases as flow 

rate increases. 
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Figure 43.   Exit Centerline Laboratory Result for Turbulence Induced by Rings  

 

The pressure loss measurements along a one meter section of the initiator with 

rings were much greater than that seen during the CFD simulations but very similar in 

nature.  It was observed in the experimental measurements that the flow chokes at a lower 

Mrefresh number than that indicated by the CFD results and can be seen in Figure 44.  This 

was due to the initiator model having a lesser blockage area ratio and less surface area 

than that of the actual initiator because of the longitudinal supports which held the rings 

in place.  The large blockage ratio and substantial surface area caused the initiator to 

choke at a lower mass flow rate than that indicated by the CFD and hence a lower Mrefresh 
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number.  Pressure loss measurements were also taken from the initiator with rings with 

hot air flow.  The pressure loss measurements for this case were slightly greater than that 

measure for cold flow.  This is explained by the fact that at higher temperatures the flow 

densities are lower and hence the flow velocities are larger leading to increased internal 

pressure drag as well as increased viscosity at the elevated temperatures resulting in 

increased viscous drag. 

 Figure 44 shows that the pressure loss measurements across a three foot section 

of the initiator with a spiral installed were less than that measured from the initiator with 

rings.  Choking was not observed at the Mrefresh numbers at which this configuration was 

tested.  Pressure loss measurements were also taken from the initiator with a spiral with 

hot air flow.  The pressure loss measurements for this case were slightly larger than that 

measure for cold flow in the spiral as seen in the initiator with rings.  
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Figure 44.   Laboratory Result for Pressure Drop over Obstacles  

 

During hot-fire testing using the initiator with rings, it was observed that at higher 

flow rates, around 0.2 kg/s, the pressure in the ignition zone was on the order of 2 atm 
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and the ignition success occasionally became erratic. Subsequently, further testing was 

completed at various flow rates as well as pressurized static testing and it was confirmed 

that this phenomenon was prevalent at higher ignition zone pressures.  Ignition success 

was achieved on the ringed initiator configuration at rates up to and including 20 Hz.  

Although detonations were not verified, as explained in the design section of this thesis, it 

is known that with ignition present detonation would have formed given the required 

initiator length and internal geometry. 
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VIII. SUMMARY AND CONCLUSIONS 

This research demonstrates a practical and possible design for a PDE which 

would minimize the overall total pressure losses by localizing the largest losses in the 

system to a small portion of the flow.  The design uses an initiation strategy which 

employs the DDT approach to detonation initiation with a TPI used for ignition and 

localizing losses associated with the DDT approach.  No supplementary gases or gaseous 

fuels are required and conventional ignition energy levels may be used. 

The lack of agreement between the turbulence data from the simulations and the 

actual turbulence measurements made in the laboratory indicate that the turbulence model 

used in the simulations did not accurately represent the flow. Whereas, the pressure data 

from the CFD simulations had better agreement with the laboratory measurements made.  

Although, the pressure losses observed in the actual laboratory test were greater than 

those found in the simulations.  The deficit of pressure seen in the simulations can be 

attributed to the fact that the simulations did not take into account any of the geometry 

used to hold the rings inside of the initiator and therefore likely needed to be corrected for 

the increased surface area and blockage ratios. 

The ignition tests revealed that the TPI has erratic ignition at higher engine flow 

rates due to the higher ignition zone pressures which affects the discharge mechanisms.  

It has been concluded that this was due to the fact that the increased pressure causes an 

increase in the dielectric resistance of the air. This, therefore, causes the path of 

preferential discharge to be through the electronics housing box rather than between the 

TPI electrode and the PDE ignition zone walls.  Additionally, recirculation zones near the 

ignition region are needed to increase the residence time for the mixtures and provide 

reliable ignition at high flow rates. 
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IX. FUTURE WORK 

Future work in this research area should examine the feasibility of an initiator unit 

with ramp-like obstacles.  Turbulence & velocity profiles should be made and compared 

to the results of the CFD simulations already performed during this research.  The ability 

of a ramped initiator to produce DDT should be explored and documented.  Research is 

also needed to observe the effects of refresh Mach number and cycle frequency on the 

detonability of the engines fuel-air mixture as well as the overall thrust and specific 

impulse of the entire system with the main combustor portion. 

Ongoing efforts in this research could also benefit from further CFD simulations.  

In particular, a model of the ringed initiator with detonation products in the head could be 

created to simulate the transient shock reflections present during the DDT process.  This 

would help to better understand and visualize the DDT process in this engine which could 

therefore aid in redesign efforts to create a more effective and efficient initiator.  A 3-D 

model is also required to more accurately simulate the flow through the engine and 

produce results that more closely match what has been seen in the actual laboratory tests.  

Further simulations are also required to discover a turbulence model that closely 

resembles the turbulence field in the PDE evaluated in this thesis.  This should be done 

with the help of CFD experts at NPS as well as with technical support from CDFRC. 

Finally, the selection and incorporation of an alternative fueling strategy should 

be considered which could provide a more versatile range of operation.  The current fuel 

injectors limit the operation of the engine to an aggregate flow rate of approximately 0.20 

kg/s due to the current lateral fuel injection set-up.  The current fuel injection method also 

limits the ability to decrease the engine flow so that it is only possible to decrease the 

fuel-air ratio by discrete increments.  
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APPENDIX A:  CFD SETTINGS 

Initiator simulation (refresh)

Problem Settings
Modules: Flow

Turbulence
Model Options

Shared: Steady state
Axisymmetric

Flow: Reference Pressure: 0 Pa
Turb: Turbulence Model K Epsilon

Volume Conditions
Physical Properties: Property Mode Fluid, Gas

Density Evaluation Method Ideal Gas Law
Viscosity Evaluation Method Constant, 7.7E-5 kg/m-s(Default)

Boundary Conditions
Inlet: Mode Total Pressure

Pressure Varied
Temperature 533.15 K
Relative Pressure Constant, 0 Pa(Default)
Kinetic Energy 0 m2/s2 (Default)
Dissipation Rate 0 m2/s3 (Default)

Wall: x-direction velocity 0 m/s (Default)
y-direction velocity 0 m/s (Default)

Symmetry: Maintain default settings
Interface: Maintain default settings
Outlet: Mode Fixed Pressure

Relative Pressure 101325 Pa
Temperature 533.15 K
Kinetic Energy 0 m2/s2 (Default)
Dissipation Rate 0 m2/s3 (Default)

Initial Conditions
Initial Condition: User specified
IC Applied: For all volumes
Shared: Temperature Constant, 533.15 K
Flow: x-direction velocity 0 m/s (Default)

y-direction velocity 0 m/s (Default)
Pressure 101325 Pa

Turb: Kinetic Energy 0 m2/s2 (Default)
Dissipation Rate 0 m2/s3 (Default)

Solver Control
Iterations: Max Iterations 15000

Convergence Criteria 0.0001 (Default)
Min Resdiual 1E-18 (Default)

Spatial Differencing: Velocity Upwind (Defaullt)
Solvers: Velocity CGS+Pre (Default)

P Correction AMG
Turbulence CGS+Pre (Default)

Relax: Velocities 0.2
P Correction 0.2
Turbulence 0.2
Pressure 1
Density 1
Viscosity 1

Limits: Maintain default settings
Advanced: Maintain default settings
Output: Steady state results specified interval (50 iterations)
Print: Mass flux summary YES  

Table 7. CFD-ACE Solver Setting for All Initiator Pre-detonation Simulations 



54

Problem Settings
Modules: Flow

Turbulence
Model Options

Shared: Steady state
Axisymmetric

Flow: Reference Pressure: 0 Pa
Turb: Turbulence Model K Epsilon

Volume Conditions
Physical Properties: Property Mode Fluid, Gas

Density Evaluation Method Ideal Gas Law
Viscosity Evaluation Method Constant, 1.846E-5 kg/m-s(Default)

Boundary Conditions
Inlet: Mode Total Pressure

Pressure 1.00E+06
Temperature 2800 K
Relative Pressure Constant, 0 Pa(Default)
Kinetic Energy 0 m2/s2 (Default)
Dissipation Rate 0 m2/s3 (Default)

Wall: x-direction velocity 0 m/s (Default)
y-direction velocity 0 m/s (Default)

Symmetry: Maintain default settings
Interface: Maintain default settings
Outlet: Mode Fixed Pressure

Relative Pressure varied
Temperature 2800 K
Kinetic Energy 0 m2/s2 (Default)
Dissipation Rate 0 m2/s3 (Default)

Initial Conditions
Initial Condition: User specified
IC Applied: For all volumes
Shared: Temperature Constant, 2800 K
Flow: x-direction velocity 0 m/s (Default)

y-direction velocity 0 m/s (Default)
Pressure varied

Turb: Kinetic Energy 0 m2/s2 (Default)
Dissipation Rate 0 m2/s3 (Default)

Solver Control
Iterations: Max Iterations 15000

Convergence Criteria 0.0001 (Default)
Min Resdiual 1E-18 (Default)

Spatial Differencing: Velocity Upwind (Defaullt)
Solvers: Velocity CGS+Pre (Default)

P Correction AMG
Turbulence CGS+Pre (Default)

Relax: Velocities 0.2
P Correction 0.2
Turbulence 0.2
Pressure 1
Density 1
Viscosity 1

Limits: Maintain default settings
Advanced: Maintain default settings
Output: Steady state results specified interval (50 iterations)
Print: Mass flux summary YES
Graphic: Maintain default settings
Monitor: Maintain default settings  

Table 8. CFD-ACE Solver Setting for Designed Initiator Post-detonation Simulations 
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Problem Settings
Problem Type: Transient Compressibile Flow

Model Options
Global: Axisymmetric
Flow: Gas Model Ideal Gas

Viscous Model Turbulent (Navier Stokes)
Ideal Gas Properties: Molecular Weight 28.97 g/mol

Gamma, (C_p/C_v) 1.4
Viscosity, Mu Sutherlands Law
Conductivity, Pr 0.7
Turulent Conductivity, Pr_t 0.9
Turbulence Model Baldwin Lomax

Volume Conditions
Physical Properties: Property Fluid

Boundary Conditions
Wall: Heat Transfer Adiabatic

Flow Condition No slip
Wall Roughness 0.00000081 m

Symmetry: Maintain default settings
Interface: Maintain default settings
Inlet: Fixed Total T and P
Outlet: BC Subtype Fixed Pressure 101325

Initial Conditions
Initial Condition from: Constant

Flow: U 200 m/s (Default)
V 0 m/s (Default)
Static Pressure 150,000 N/m^2
Static Temperature 600 K

Solver Control
Control: Time Accurate

Simulation: Max Number of Cycles 2500
Start Time 0 s (Default)
Max Time 0.05 s

Time Step: Based on CFL Number
Initial CFL 0.001
Final CFL 10
Ramping Cycles 100 (irrelevant for transient)

Spatial: Flow Min Resdiual 1E-18 (Default)
Velocity Upwind (Defaullt)
Flux Splitting Roe's FDS
Spatial Accuaracy Higher Order

Entropy Fix Linear Waves 0.3
Nonlinear Waves 0.3

Solvers: Flow Time Integration Implicit
Implicit Scheme Point Jacobi (Fully Implicit)
Subiterations 40
Tolerance 0.0001
Discretization Backward Euler

Linear Relaxation: No settings
Advanced: Freeze flow field Unchecked

Output
Limits: Maintain default settings

Viscosity 1
Output: Solution Data Specified Interval 50 cycles/steps

Unique files
RSL, Force, etc Overwrite

Print: Aero Force Summary Unchecked
Aero Force by Section Unchecked

Monitor: Monitor Points Unchecked  
Table 9. CFD-FASTRAN Solver Settings for Designed Initiator During Detonation 

Simulations 
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APPENDIX B:  CFD RESULTS 

Comments
Mass 
flow/rad 
(kg/s/rad)

Mass flow 
(kg/s) Mrefresh

Ptotin 

(kPa)
Ptotout 

(kPa)
Pressure 
drop(kPa)

∆P rate 
(kPa/m)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

0.0444 0.279 0.342 250 156 94 103 1535 14.66 378 55.4 4376 64.97 144.0 93.6
0.0397 0.250 0.320 225 146 79 86 1392 15.29 345 52.8 3336 59.62 137.0 81.7
0.0348 0.219 0.296 200 136 64 70 1209 16.07 306 49.2 2388 54.85 126.0 69.1
0.0317 0.199 0.281 185 130 55 60 1071 16.47 281 46.3 1896 52.63 117.0 61.6
0.0284 0.179 0.264 170 124 46 50 913 16.82 254 42.7 1459 50.48 107.0 54.0
0.0249 0.156 0.243 155 119 36 39 736 17.13 224 38.4 1071 48.21 96.0 46.3
0.0223 0.140 0.228 145 115 30 32 610 17.29 202 34.9 836 47.16 86.7 40.9
0.0195 0.122 0.208 135 112 23 25 478 17.47 177 30.9 618.2 46.02 76.4 35.2
0.0162 0.102 0.182 125 109 16 18 341 17.57 148.6 26.1 415.9 44.85 64.3 28.8
0.0123 0.077 0.146 115 106 9 10 199 17.61 113.4 20.0 228.1 43.59 49.0 21.4
0.0098 0.061 0.120 110 104 6 6 127 17.57 90.7 15.9 139.6 42.84 39.0 16.7
0.0079 0.049 0.099 107 103 4 4 83 17.51 73.6 12.9 88.57 42.25 31.5 13.3
0.0000 0.000 0.000 101.3 101 0 0 0 0 0 0.0 0 0 0.0 0.0

Centerline r=0.0020 (exit plane) r=0.0151(exit plane)

 
Table 10. CFD Results for Initiator with Rings 

 
Comments

Mass 
flow/rad 
(kg/s/rad)

Mass flow 
(kg/s) Mrefresh

Ptotin 

(kPa)
Ptotout 

(kPa)
Pressure 
drop(kPa)

∆P rate 
(kPa/m)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

0.0649 0.408 0.735 175 161 14 15 0 5E-04 393 0.0 1031 40.91 111.0 45.4
0.0463 0.291 0.563 140 136 4 5 0 5E-04 307.153 0.0 611.7 47.33 73.9 35.0
0.0396 0.249 0.492 130 128 2 3 0 6E-04 271.1 0.0 471.4 50.25 61.1 30.7
0.0318 0.199 0.402 120 119 1 1 0 0.004 224.6 0.0 317.4 54.54 46.2 25.2
0.0270 0.170 0.345 115 114 1 1 0 0.021 194.9 0.0 234.3 57.57 37.6 21.6
0.0238 0.149 0.305 112 112 0 0 0 0.064 173.7 0.1 182.5 60.08 31.8 19.1
0.0200 0.126 0.258 109 109 0 0 0 0.227 148.6 0.3 129.6 63.38 25.4 16.1
0.0155 0.097 0.201 106 106 0 0 0 0.821 116.9 1.0 76.4 68.29 18.1 12.4
0.0090 0.057 0.117 103 103 0 0 3 3.194 70 2.2 25 82.22 8.6 7.1
0.0000 0.000 0.000 101.3 101 0 0 0 0 0 0.0 0 0 0.0 0.0

Centerline r=0.0020 (exit plane) wall (exit plane)

 
Table 11. CFD Results for Clean Initiator 

 
Comments

Mass 
flow/rad 
(kg/s/rad)

Mass flow 
(kg/s) Mrefresh

Ptotin 

(kPa)
Ptotout 

(kPa)
Pressure 
drop(kPa)

∆P rate 
(kPa/m)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

0.0423 0.266 0.321 275 172 103 113 1226 11.8 419.5 49.5 4054 45.02 200.0 90.0
0.0381 0.239 0.301 250 161 89 97 1213 12.59 391.1 49.3 3641 48.05 177.6 85.3
0.0338 0.212 0.279 225 151 74 81 1176 13.52 358.8 48.5 3164 50.93 156.2 79.5
0.0293 0.184 0.256 200 140 60 65 1096 14.52 322.4 46.8 2792 57.04 131.0 74.7
0.0265 0.166 0.240 185 134 51 56 1024 15.29 296 45.3 2271 55.33 121.8 67.4
0.0235 0.148 0.222 170 127 43 47 921 16.03 267.7 42.9 1897 56.87 108.3 61.6
0.0204 0.128 0.203 155 121 34 37 787 16.79 236.2 39.7 1505 58.37 94.0 54.9
0.0169 0.106 0.178 140 115 25 27 616 17.64 198.9 35.1 1098 59.93 78.2 46.9
0.0144 0.090 0.158 130 111 19 20 481 18.19 170.4 31.0 818.6 60.94 66.4 40.5
0.0114 0.072 0.132 120 108 12 13 328 18.76 136.6 25.6 535.6 61.99 52.8 32.7
0.0089 0.056 0.108 113 105 8 8 212 19.16 107.4 20.6 335.8 62.75 41.3 25.9
0.0076 0.048 0.094 110 104 6 6 159 19.32 92.4 17.9 249.9 63.15 35.4 22.4
0.0000 0.000 0.000 101.3 101 0 0 0 0 0 0.0 0 0 0.0 0.0

Centerline r=0.0020 (exit plane) r=0.0176 (exit plane)

 
Table 12. CFD Results for Initiator with Ramps 
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Comments
Mass 
flow/rad 
(kg/s/rad)

Mass flow 
(kg/s) Mrefresh

Ptotin 

(kPa)
Ptotout 

(kPa)
Pressure 
drop(kPa)

∆P rate 
(kPa/m)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

TKE 
(m2/s2) TI (%)

Velocity 
(m/s)

Vel' 
(m/s)

0.0514 0.323 0.355 1000 898 102 112 1363 17.58 297 52.2 1591 44 128.2 56.4
0.0492 0.309 0.356 1000 908 92 101 1208 17.6 279.3 49.2 1390 43.79 120.4 52.7
0.0459 0.288 0.348 1000 922 78 86 1012 17.64 255.1 45.0 1142 43.45 110.0 47.8
0.0421 0.265 0.332 1000 935 65 71 820 17.63 229.8 40.5 910.16 43.1 99.0 42.7
0.0378 0.238 0.311 1000 949 51 56 634 17.59 202.4 35.6 690.1 42.75 86.9 37.2
0.0341 0.214 0.292 1000 959 41 45 499 17.57 179.9 31.6 534.9 42.42 77.1 32.7
0.0297 0.187 0.270 1000 969 31 33 368 17.51 155 27.1 387 42.03 66.2 27.8
0.0263 0.165 0.252 1000 976 24 26 283 17.46 136.3 23.8 292.9 41.73 58.0 24.2
0.0223 0.140 0.228 1000 983 17 18 200 17.39 114.9 20.0 202.1 41.37 48.6 20.1
0.0173 0.109 0.192 1000 990 10 11 118 17.23 89 15.3 115.4 40.73 37.3 15.2
0.0141 0.089 0.164 1000 993 7 7 78 17.13 72.7 12.4 73.8 40.23 30.2 12.1
0.0099 0.062 0.121 1000 997 3 4 38 16.83 51.8 8.7 33.3 38.86 21.0 8.2
0.0000 0.000 0.000 1000 1000 0 0 0 0 0 0.0 0 0 0.0 0.0

Centerline r=0.0020 (exit plane) r=0.0151 (exit plane)

 
Table 13. CFD Results for Initiator with Rings Post-detonation Conditions 
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APPENDIX C:  WIRING TABLES 

AC Relays:

Relay Number Logic Input (Port/Bit) Controls:

AC 1/0 1/0 Main Air 3-way Ball Valve (Air Isolation
Valve)

AC 1/1 1/1 Vitiator (O2/H2) Solenoid Valves
AC 1/2 1/2 Spare
AC 1/3 1/3 Torch (H2/Air) Solenoid Valves
AC 2/0 1/4 Torch Ignition
AC 2/1 1/5 Torch (H2) Ball Valve
AC 2/2 1/6 Fuel Pump
AC 2/3 1/7 Vitiator (O2/H2) Ball Valves
AC 4/3 2/1 Spare  

Table 14. Electrical Relay Assignments 
 

Low Speed Data
Channel Data
Device 4  ACH 32 Inlet Temperature
                ACH 33 Vitiator Temperature
                ACH 34 Future Temperature
                ACH 35 mdot Temperature
                ACH 36 Oil Pressure
                ACH 37 mdot Pressure
                ACH 38 Shop Air Pressure
                ACH 39 N2 Pressure
                ACH 48 H2 Pressure
                ACH 49 Future Pressure
                ACH 50 Engine Inlet Pressure
                ACH 51 Fuel Pump Pressure
                ACH 52 Eng 3 Pressure
                ACH 53 O2 Bottle Pressure
                ACH 54 Future Pressure
                ACH 55 Thrust

High Speed Data  
Table 15. Data Acquisition Assignments 
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High Speed Data
Channel Data

BNC CH 1 TPI Voltage
      BNC CH 2 TPI Amperage

BNC CH 3 Kistler High Speed Pressure 1
BNC CH 4 Kistler High Speed Pressure 2
BNC CH 5 Kistler High Speed Pressure 3
BNC CH 6 Kistler High Speed Pressure 4
BNC CH 7 Kistler High Speed Pressure 5
BNC CH 8 Kistler High Speed Pressure 6  

Table 16. High Speed Data Wiring 
 

AFT

FORE

A0

A1

F1

F0

A6

A7

A5

A4A3A2

F7

F6

F5

F4F3F2 C0

 
Figure 45.   Thrust Stand Load Cell Wiring Diagram 
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Thrust Stand PXI slot 7
SCXI 1520 (see thrust stand diagram for load cell #'s)

Slot 1 ACH0 Load Cell A0
ACH 1 Load Cell A1
ACH 2 Load Cell A2
ACH 3 Load Cell A3
ACH 4 Load Cell A4
ACH 5 Load Cell A5
ACH 6 Load Cell A6
ACH 7 Load Cell A7

Slot 2 ACH0 Load Cell F0
ACH 1 Load Cell F1
ACH 2 Load Cell F2
ACH 3 Load Cell F3
ACH 4 Load Cell F4
ACH 5 Load Cell F5
ACH 6 Load Cell F6
ACH 7 Load Cell F7

Slot 3 ACH0 Load Cell C0
ACH 1 blank
ACH 2 blank
ACH 3 blank
ACH 4 blank
ACH 5 blank
ACH 6 blank
ACH 7 blank  

Table 17. Thrust Stand Load Cell Data Acquisition Assignments 
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APPENDIX D: TEST CELL #2 SOP 

Test Cell #2 
Standard Operating Procedures (S.O.P) 

Engine Start UP 
(last modification date 24 November 2006) 

 
 
Prior to starting preparations 

1. Notify all lab personnel of live test cell. 
2. Turn ON control console 
3. Turn ON warning lights 
4. Notify the Golf Course (x2167) (Only required if Hot Fire Test is conducted) 

 
Preparing Test Cell 

1.   Push the Emergency Stop IN (secured) 
1. Turn ON BNC Cabinet Power Strip.  
2. On Control Computer, open LABVIEW and ensure that the execution target 

contains the PXI address. Open control panel and run the program. 
a. RT Target address: 131.120.20.49 
b. Control Program Path 

i. Open 
ii. Test Cell #2 Manual Control v19 

iii. Enter Run Path Name  
1. If this is not completed prior to running you will lose the 

data file that was created with the default name.  
3. Turn ON 24 VDC in the control room cabinet 
4. OPEN Main Air (HP Air Tank Valve) and High Pressure Air 

a. Blue hand valve should be opened slowly as not to shock the lines 
b. Node 4 air valve in test cell #1 

5. OPEN H2 & O2 six packs 
6. Enter Test Cell #2 and OPEN all the supply gas bottles that are going to be used 
7. OPEN both JP-10 valves 
8. Ensure that PXI Controllers, Amps, Kisslers, and Power strips in 2 the black 

cabinets are ON.  
9. Turn ON 24 VDC power supply for Test Cell #2 TESCOM Control Power. 
10. OPEN Shop Air, Purge Air (High Pressure Air) and Main Air 
11. CLOSE 440 VAC knife switch for Oil Pump 
12. TURN ON Cooling Water 
13. TURN ON TPI (do not exceed 85 on heater control knob) 
14. CONNECT Vitiator Spark Plug (if being used). 
15. If required, set up any visual data recording equipment.  
16. Evacuate all non-essential personnel to the control room 
17. RUN the control 
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Running the Engine 
1. Set Main Air, Secondary/Purge Air, and all other gases pressures (ER3000) ON 

RPL00 
a. Set Main Air and Purge Air (ER3000) 

i. 001 Main Air 
ii. 004 Secondary Air 

b. Supply Gases in Test Cell #2 TESCOM Node Address 
i. 020 Vit H20 

ii. 21 Vit O2 
2. DISCONNECT CH 7 & 8  
3. Set All Engine Control Parameters (on BNC Pulse Generator) 

a. Send Engine Parameters to BNC 
4. RECONNECT CH 7 & 8 
5. Twist Emergency Stop Button clockwise (TEST CELL IS NOW LIVE) 
6. ENABLE the Test Cell on the VI. 
7. OPEN required ball valves. 
8. Verify Golf Course is clear 
9. Sound the Siren 
10. When area is clear, START record VCRs 
11. Fuel Pump On 
12. TURN ON Data Recording Switch 
13. Manually engage Main Air flow 
14. Start Vitiator 

 
***************************WARNING*********************************** 

The next step will result in the commencement of a run profile and ignition. 
* Note: The 3-Way Ball Valve has a control in the Vitiator sequence. If the 

Vitiator is used then the 3-Way Ball will not divert through the engine until 375º F and 
will dump overboard at the end of the run at 175º F.  

 
15. COMMENCE RUN 

a. High Speed DAQ will be triggered and the engine profile will commence 
16. STOP RUN. 

a. Pulse generation will be stopped. 
17. TURN OFF Data Recording Switch 
18. Wait for main air to divert  
19. Ensure all BV are closed 
20. Fuel pump off 
21. Stop Main Air Flow 
22. DISABLE the Test Cell on the VI. 
23. Push Emergency Stop Button IN
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Test Cell #2 

Standard Operating Procedures (S.O.P) 
Engine Shut DOWN 

(last modification date 24 November 2006) 
 

 
1. SET all supply gases to ZERO, Nodes 1,4,20 & 21 
2. STOP control code. 
3. Push Emergency Stop Button IN 
4. Turn OFF Power Strip in BNC Timing Cabinet 
5. If Gas Turbine ignitor used DISABLE BEFORE turning off 24 VDC 
6. TURN OFF 24 VDC power supply (check with other test cells first) 
7. CLOSE Janesbury Valve (check with other test cells first) 
8. REMOVE Vitiator Spark Plug head 
9. SECURE TESCOM 24VDC power. (check with other test cells first) 
10. CLOSE Shop Air, High Pressure Air, and Main Air 
11. CLOSE 440 VAC Knife switch 
12. TURN OFF Cooling Water 
13. CLOSE Supply gases 
14. CLOSE JP-10 supply valves 
15. TURN OFF TPI 
16. CLOSE H2 & O2 six packs 
17. VENT H2 & O2 lines 
18. STOW Cameras and other equipment used in testing. 
19. CLOSE Test Cell #2. 
20. TURN OFF Warning Lights. 
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APPENDIX E: ENGINEERING DRAWINGS 

 
Figure 46.   PDE Engine Adapter 
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Figure 47.   TPI Holder 
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Figure 48.   TPI Holder Extension Assembly 
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Figure 49.   TPI Holder Extension Assembly 

 
 



71

 
 

 
Figure 50.   TPI Holder (version 2) 
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Figure 51.   TPI Holder Extension Flange 
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Figure 52.   New TPI Assembly 
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Figure 53.   Macor Insulator 
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Figure 54.   Nylon\Teflon Insulator 
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Figure 55.   New TPI Metal Holder 
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Figure 56.   Metal Insert 
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Figure 57.   Metal Cap 

 
 
 



79

 
Figure 58.   New PDE Design Entire Assembly 
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Figure 59.   Pickoff Assembly 
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Figure 60.   Pickoff 

 

Figure 61.   TPI Holder Extension Flange 
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Figure 62.   Pickoff Flange 
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Figure 63.   Igniter Assembly 
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Figure 64.   Igniter Section 
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Figure 65.   Igniter Section flange 
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Figure 66.   Igniter to Initiator Flange 
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Figure 67.   Ringholder Assembly 
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Figure 68.   Ringholder Flange 
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Figure 69.   Ringholder 
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Figure 70.   Ring 
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Figure 71.   Initiator Assembly 
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Figure 72.   Initiator Flange 
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Figure 73.   Initiator Tube 

 



94

 
Figure 74.   Initiator Tube Version 2 for Pressure Transducers 
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Figure 75.   Pressure Transducer Mounting Block 
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